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In interference tasks (e.g., Stroop, 1935), the difference between congruent and incongruent latencies
(i.e., the “congruency” effect) is larger in trial blocks containing mostly congruent trials than in trial
blocks containing mostly incongruent trials (the proportion-congruent [PC] effect). Although the PC
effect has typically been interpreted as reflecting adjustments in attention toward/away from the
task-irrelevant dimension (i.e., a conflict-adaptation strategy), recent research has suggested alternative
accounts based on the learning of either contingencies (i.e., distractor-response associations) or of
temporal expectancies (i.e., the typical response speed on previous trials), accounts in which conflict
adaptation plays no role. Using the picture–word interference paradigm, we report data from two PC
manipulations in which contingency learning was made impossible by using nonrepeated distractors
(Experiment 1A) or both nonrepeated distractors and responses (Experiment 1B). The classic PC effect
emerged in both experiments. In addition, learning of temporal expectancies could not explain the present
PC effects either, as results from trial-level analyses of Experiments 1A and 1B and a nonconflict version
of Experiment 1B (Experiment 2) were inconsistent with the predictions of the temporal learning account
of PC effects. These results suggest that conflict adaptation remains a credible explanation for PC effects.

Public Significance Statement
This study shows that people can adapt their attention to deal with situations in which there is
frequent distraction, and it rules out alternative interpretations for this behavior.

Keywords: conflict adaptation, contingency learning, picture–word interference, proportion-congruent
effect, temporal learning

An established fact in cognitive research is that goal-oriented
behavior requires some form of control for selection of appropriate
responses in the face of conflict coming from task irrelevant
information. What is less established, however, is whether control
can be adaptively modulated in response to experience with con-
flict. With such a conflict adaptation mechanism, the cognitive
control system would, presumably, not just resolve conflict, but
also monitor conflict and adapt attention to relevant and irrelevant
information accordingly (Botvinick, Braver, Barch, Carter, & Co-
hen, 2001).

Manipulations of conflict frequency in interference tasks such as
the Stroop (1935) task typically produce a pattern of results that is
consistent with a conflict-adaptation explanation. In the classic
(color–word) Stroop task, participants are required to name the ink

color of a word while ignoring the word itself. A congruency effect
typically arises, with faster (and often more accurate) responding
to congruent items (e.g., the word RED in red color, REDred) than
to incongruent items (e.g., the word RED in blue color, REDblue;
MacLeod, 1991). Of interest here is the fact that the magnitude of
this effect varies as a function of experience with conflict. Specif-
ically, situations in which the proportion of congruent items is high
(i.e., infrequent conflict) elicit larger congruency effects than do
situations in which the proportion of congruent items is low (i.e.,
frequent conflict; e.g., Crump, Gong, & Milliken, 2006; Jacoby,
Lindsay, & Hessels, 2003; Logan & Zbrodoff, 1979; for a review,
see Bugg & Crump, 2012). These Proportion-Congruent (PC)
effects are readily explained by a conflict-adaptation process.
When conflict is frequent, there is regular demand for the control
system to maintain attention focused on the relevant dimension.
Interference from the irrelevant dimension will thus be minimized,
resulting in a reduced congruency effect. On the other hand, when
conflict is infrequent, the benefit of focusing on the color is rarely
reinforced. As a result, interference from the irrelevant dimension
on the few incongruent items that are present results in a large
congruency effect.

Recent years, however, have witnessed a growing concern
among researchers about the validity of conflict adaptation as an
explanation for PC effects (Schmidt, 2013b; Schmidt, Notebaert,
& van den Bussche, 2015). Such concern has its roots in the
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realization that, in speeded tasks, responding might be influenced
by learned associations, or contingencies, between a stimulus and
a motor response (Musen & Squire, 1993; Schmidt, Crump, Chees-
man, & Besner, 2007), as well as by the formation of temporal
expectancies for the emission of a response (Schmidt, 2013c). The
reason these issues are relevant is that PC manipulations are
typically confounded with contingency-learning biases as well as
with temporal-learning biases (Schmidt, 2013c; Schmidt &
Besner, 2008). As such, some combination of these factors when
applied to the mechanisms involved in interference tasks appears
to be able to explain the PC effects that are observed in those tasks
without needing to posit a role for conflict (Kinoshita, Mozer, &
Forster, 2011; Levin & Tzelgov, 2016). What is worth noting at
this point is that, as will be described subsequently, these alterna-
tive accounts are essentially facilitation accounts. That is, their
explanations for PC effects are based on the idea that some aspect
of processing is facilitated as a result of participants gaining
relevant information about the nature of the task. Hence, these
accounts offer a radically different view of PC effects than that
offered by the conflict-adaptation account, which is based on an
interference-driven mechanism.

Contingency Learning

Contingency learning involves acquiring knowledge that two
events tend to occur together (e.g., the presentation of the word
RED typically requires the response “green”) and using that
knowledge to facilitate responding (Beckers, De Houwer, & Ma-
tute, 2007). In color–word identification tasks in which the words
used are not color names, contingency learning is presumed to
explain why color identification is faster for a frequent word–color
pair (� high-contingency item, e.g., the word BRAG presented in
green color 75% of the time) than for an infrequent word–color
pair (� low-contingency item, e.g., the word BRAG presented in
yellow color 25% of the time; Schmidt et al., 2007; see also Musen
& Squire, 1993). Essentially, according to contingency-learning
accounts, participants implicitly learn contingencies between
words and color responses, that is, that specific words predict
specific color responses (e.g., BRAG predicts green; Schmidt et
al., 2007; see also Forrin & MacLeod, 2017; Lin & MacLeod,
2018), allowing them to respond more rapidly when the word
appears in its most frequent color.

The reason this issue is relevant for PC effects is that manipu-
lating the proportion of congruent items in the Stroop task typi-
cally involves altering the frequency of specific word–color pairs
as well. For example, PC experiments might involve a Mostly
Congruent (MC) list in which the word RED appears in its con-
gruent, red color 75% of the time and in the incongruent, blue
color 25% of the time, and a Mostly Incongruent (MI) list in which
the word RED appears in the incongruent, blue color 75% of the
time and its congruent, red color 25% of the time. Doing so,
however, means that REDred is more frequent than REDblue in the
MC list, whereas REDblue is more frequent than REDred in the MI
list. If frequent word–color pairs elicit faster responses, partici-
pants might thus speed up on REDred in the MC list and REDblue

in the MI list. Crucially, fast responding to the congruent item
REDred in the MC list will lead to a relatively large congruency
effect, whereas fast responding to the incongruent item REDblue in
the MI list will lead to a relatively small congruency effect. In

other words, learning of word–color contingencies, rather than
adaptation to conflict frequency, might be responsible for the
difference in magnitude of congruency effects that is typically
found in PC manipulations in the Stroop task (Schmidt & Besner,
2008).

Importantly, the assumption that contingency learning is the
only source of PC effects (Schmidt & Besner, 2008) implies that
no PC effects should be observed in PC manipulations that control
for contingency learning operations. In an effort to address this
issue, a number of studies have been conducted that evaluate PC
effects on contingency-controlled stimuli, that is, stimuli which are
matched in contingency across MC and MI lists (Blais & Bunge,
2010; Bugg, 2014a; Bugg & Chanani, 2011; Bugg, Jacoby, &
Toth, 2008; Gonthier, Braver, & Bugg, 2016; Hutchison, 2011).
The rationale is that if PC effects are driven by a mechanism of
adaptation to list-wide conflict frequency, that mechanism should
produce a PC effect for all stimuli, including the contingency-
controlled stimuli. Results from those studies do provide at least
partial support for this prediction, with PC effects on contingency-
controlled stimuli being reported in a number of circumstances
(Bugg, 2014a; Bugg & Chanani, 2011; Gonthier et al., 2016;
Hutchison, 2011), although not in all circumstances (Blais &
Bunge, 2010; Bugg et al., 2008). Therefore, contingency learning
by itself does not appear to offer a complete explanation of PC
effects, allowing proponents of the conflict-adaptation account to
argue that these contingency-controlled PC effects, when obtained,
likely reflect the action of a mechanism of adaptation to conflict
frequency (Bugg, 2014a). In contrast, Schmidt (2013c) has con-
tended that those effects are better explained by a different, non-
conflict learning process—temporal learning.

Temporal Learning

Whereas contingency learning is about using stimulus informa-
tion to predict what to respond, temporal learning refers to the
process of learning when to emit a response. Participants in
speeded tasks are known to establish something like a time crite-
rion for when to respond (i.e., the point in time at which they
expect to respond) depending on the characteristics of the stimuli.
For example, relatively easy stimuli are typically responded to
faster when presented in a list where all of the stimuli are easy (i.e.,
a pure list) than when presented intermixed with harder items (i.e.,
a mixed list), suggesting that participants adapt their temporal
expectations for response emission to the average difficulty expe-
rienced in the list (Lupker, Brown, & Colombo, 1997; Lupker,
Kinoshita, Coltheart, & Taylor, 2003). Recently, Schmidt (2013c)
extended this idea to explain PC effects in the Stroop task that have
been obtained in the absence of biases created by contingency
learning (Bugg, 2014a; Hutchison, 2011).

According to Schmidt’s (2013c) temporal learning account,
participants will develop a relatively fast temporal expectancy in
an MC list (because most of the items in the list elicit relatively
fast responses) and a relatively slower temporal expectancy in an
MI list (because most of the items in the list elicit relatively slow
responses). Participants will then use those temporal expectancies
to anticipate when a response should be emitted. Specifically,
congruent items, but not incongruent items, will speed up in the
MC list because they can be processed rapidly enough to meet
the fast temporal expectancy established for that list. As a result,

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

996 SPINELLI, PERRY, AND LUPKER



the congruency effect will be relatively large in the MC list.
Conversely, in an MI list, participants anticipate responding late,
and as a result, there will be less pressure on them to elicit fast
responses to congruent items. This situation would cause slower
latencies to congruent items in an MI list relative to congruent
items in an MC list. In contrast, according to Schmidt’s account, a
speed-up could potentially be observed for incongruent items in an
MI list because they can be processed fast enough to meet the
(slower) temporal expectancy established for that list. The result
would be a relatively small congruency effect. In practice, how-
ever, hard-to-process stimuli appear to be relatively insensitive to
temporal expectancies, at least in some situations (Kinoshita &
Mozer, 2006; Kinoshita et al., 2011), meaning that the slow
temporal expectancy developed for the MI list may have little
impact on incongruent items. In any case, the core claim here is
that learning of temporal expectancies can inflate the congruency
effect in the MC list in comparison to the congruency effect in the
MI list. Thus, similar to contingency learning, temporal learning
can explain differences in the magnitude of congruency effects
across MC and MI lists without invoking any type of conflict-
adaptation mechanism.

A critical piece of evidence in support of the temporal learning
account of PC effects comes from statistical analyses of PC ma-
nipulations that take into account the role of temporal expectancies
that individuals develop on a trial-by-trial basis. The idea for these
analyses was first proposed by Kinoshita et al. (2011) within the
framework of their Adaptation to the Statistics in the Environment
(ASE) model of optimal response initiation and was then extended
by Schmidt (2013a) in his Parallel Episodic Processing (PEP)
model of color identification (see also Schmidt, De Houwer, &
Rothermund, 2016). Although the two models were developed to
explain different phenomena (relatedness proportion effects in
masked priming in the case of the ASE model, PC effects in
regular Stroop paradigms in the case of the PEP model) and place
emphasis on different aspects of response emission (adaptation to
perceived difficulty in the case of the ASE model, rhythmic
responding in the case of the PEP model), the models make similar
assumptions. First, performance on the current trial is influenced
by the participant’s knowledge of response times on the previous
trials (i.e., the trial history), specifically the latencies on the most
recent trials. Those latencies, especially the latency on the most
recent trial (response time [RT] on trial n – 1), would function as
an index of perceived task difficulty (in the ASE model) or as an
index of the rhythm of responding (in the PEP model) that could
be used to form an expectancy for response initiation latency on
trial n. Thus, RT on trial n – 1 can function as an index of temporal
expectancy for trial n, with a slower RT on trial n – 1 leading to
a slower RT on trial n (Kiger & Glass, 1981; Taylor & Lupker,
2001). Second, as noted, easier stimuli are more prone to influ-
ences from trial history than harder stimuli (although this pattern is
not inevitable: Kinoshita & Mozer, 2006; Kinoshita et al., 2011).
The critical implication of these assumptions is that with easy
stimuli strongly affected by RT on trial n – 1 (i.e., they will show
a large slow-down following a slower RT on trial n – 1) and hard
stimuli only weakly affected by RT on trial n – 1 (i.e., they will not
show a large slow-down following a slower RT on trial n – 1),
difficulty effects (i.e., the time difference between hard and easy
stimuli) will decrease as RT on trial n – 1 increases.

Evidence for this pattern has been obtained from experimental
data that were analyzed using linear mixed-effects models. This
class of models, unlike traditional means-based ANOVAs, allows
one to evaluate the impact of RT on trial n – 1, a trial-level
continuous predictor, on performance on trial n. In several inves-
tigations, use of those analyses revealed that difficulty effects
caused by visible or even subliminal distractors were modulated by
trial history, with there being smaller effects when the RTs were
slower on trial n – 1 (Huber-Huber & Ansorge, 2017, 2018;
Kinoshita et al., 2011; Schmidt, 2013c; Schmidt & Weissman,
2016). Most importantly for the present discussion, the fact that
congruency effects (and difficulty effects in general) are modu-
lated by temporal expectancies is relevant for PC manipulations
because fast RTs inevitably occur more frequently in MC lists than
in MI lists. As faster RTs on trial n – 1 result in larger congruency
effects, MC lists will tend to produce larger congruency effects
than MI lists independent of contingency-learning biases or a
presumed conflict-adaptation mechanism.

Support for the idea that temporal learning is at least partially
responsible for PC effects comes from Schmidt’s (2013c) reanal-
ysis of the data from Hutchison’s (2011) contingency-controlled
items using the aforementioned linear mixed-effects model anal-
yses. Those analyses not only replicated the finding originally
reported by Hutchison (2011) of a significant PC effect, but also
indicated that congruency effects decreased with increasing RT on
trial n – 1. Furthermore, this decreased congruency effect was
accompanied by a reduction (although not an elimination) of the
value of the beta parameter for the PC effect (i.e., the interaction)
in the model, suggesting that PC effects and temporal learning
effects explain common variance in the data. Schmidt interpreted
this finding as indicating that temporal learning has the potential of
generating PC effects on its own, a point he reinforced by showing
that his PEP model, in which temporal learning was an imple-
mented mechanism but adaptation to conflict frequency was not,
could simulate Hutchison’s (2011) results. At the very least,
Schmidt’s analysis suggests that temporal learning contributes to
PC effects in contingency-controlled situations and, therefore, its
role needs to be considered when analyses of PC manipulations are
conducted.

More recently, however, Cohen-Shikora, Suh, and Bugg (2018)
challenged this conclusion. They noted that the critical interaction
between congruency and RT on trial n – 1 reported by Schmidt
(2013c) was obtained when the typical positively skewed RT
distribution was normalized with an inverse transformation (in-
vRT � �1000/RT) to accommodate the assumption made by
linear mixed-effects models that the dependent variable be nor-
mally distributed. A somewhat neglected downside of this type of
analysis procedure is that nonlinear transformations of the depen-
dent variable systematically alter the pattern and size of interaction
terms, casting doubt on the reliability of analyses of interactions
(Balota, Aschenbrenner, & Yap, 2013).

A solution to this problem is offered by generalized linear
mixed-effects models, models which do not assume a normally
distributed dependent variable and require, therefore, no RT trans-
formation (Lo & Andrews, 2015). Using both inverse-transformed
RTs in a linear mixed-effects model and untransformed (i.e., raw)
RTs in a generalized linear mixed-effects effects model, Cohen-
Shikora et al. (2018) reanalyzed Hutchison’s (2011) dataset along
with two additional data sets in which a PC manipulation had been
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implemented while controlling for contingencies (i.e., Bugg, 2014;
Gonthier et al., 2016). They reported that Schmidt’s (2013c) find-
ing that congruency effects decrease with increasing RT on trial
n � 1 was only obtained with transformed data but not with
untransformed data, with the latter data even providing evidence
for the opposite pattern in some cases (i.e., congruency effects
increased, rather than decreased, with increasing RT on trial n – 1).
Furthermore, in all the data sets, the PC effect remained significant
when temporal learning indices were included in the analyses,
even when the value of the beta parameter for that effect was
reduced due to the introduction of those indices. Finally, attempts
to improve indices of temporal learning (e.g., by using mean RT on
the three most recent trials as a predictor in the analyses) also
yielded little evidence for the temporal learning account.

In sum, Cohen-Shikora et al.’s (2018) analyses suggest that
previously reported evidence in support of the temporal learning
explanation of the PC effect (Schmidt, 2013c) might have been
biased by the nonlinear transformation applied to RT data. There-
fore, it would be advisable that research aiming to control for
temporal learning avoids this bias by using a more appropriate
statistical technique, such as generalized linear mixed-effects mod-
eling.

The Present Research

Although conflict-adaptation and nonconflict learning mecha-
nisms are not necessarily mutually exclusive (Abrahamse, Braem,
Notebaert, & Verguts, 2016; Egner, 2014), there has been a mount-
ing debate in recent years concerning whether the classic empirical
markers of conflict adaptation are, in fact, actually produced by
nonattentional learning biases (e.g., contingency learning, tempo-
ral learning), biases that are typically found in manipulations
designed to investigate what are presumed to be conflict adaptation
effects. For some researchers, such debate has culminated in the
idea that conflict adaptation might be an illusion (Schmidt et al.,
2015). The fact that conflict adaptation tests are routinely used in
clinical settings (e.g., Abrahamse et al., 2016; Bonnin, Houeto,
Gil, & Bouquet, 2010) hints at the profound consequences borne
by this idea. Presumed markers of conflict adaptation have been
reported across the life span (e.g., Bugg, 2014a, 2014b) and across
a variety of tasks (Bugg & Crump, 2012), with increasing reports
coming from neuroimaging research (e.g., Braver, 2012; Sheth et
al., 2012; West & Alain, 2000; Wilk, Ezekiel, & Morton, 2012),
and these markers have been used in a number of diagnostic
situations. An exact understanding of what these findings reflect is
therefore crucial.

Motivated by these considerations, the present research aimed to
reexamine the PC effect while at the same time accounting for
potential nonconflict learning confounds. Specifically, we were
interested in providing an answer to the following question: Would
evidence for adaptation to conflict frequency emerge when non-
conflict learning biases are controlled for or removed from the
design altogether? Some attempts undertaken in this direction
suggest that the answer might be “yes” (Bugg, 2014a; Bugg &
Chanani, 2011; Bugg & Hutchison, 2013; Bugg, Jacoby, & Cha-
nani, 2011; Gonthier et al., 2016; Hutchison, 2011). However,
much of that research fails to consider nonconflict learning biases
in their entirety and/or is based on experiments that deviate con-
siderably from the original PC paradigm (Schmidt, 2013b, 2014a).

In addition, very few attempts have been made to control for
temporal learning when analyzing PC effects (Cohen-Shikora et
al., 2018; Schmidt, 2013c).

One primary objective of the present research was to examine
adaptation to conflict frequency in a situation in which contin-
gency learning could not contribute to the PC effect. According to
Schmidt (2013a), learning of word–response contingencies is a
two-step process: First, on each trial participants encode informa-
tion about the word, the color, and the response made into episodic
memory. Second, any word presented on a subsequent trial will
lead to the retrieval of past episodes involving that word, with
facilitation occurring if the currently presented word requires the
same response as most of its previous occurrences. Note that
repetition appears to be an important aspect of this process. Words
need to be repeated at least a few times in the experiment for
responses associated with them to be able to influence subsequent
behavior (Lin & MacLeod, 2018). Because this process is based on
learning a predictive association between a specific word and a
specific response (Schmidt et al., 2007; but see Schmidt, Augus-
tinova, & De Houwer, 2018), learning of word–response contin-
gencies would thus seem to require repeating words in the relevant
colors. In other words, contingency learning would be impossible
without repeated word distractors.

Based on these considerations, the present experiments exam-
ined whether PC effects emerge in a PC manipulation in a Stroop-
like task where no contingency learning would be possible because
word distractors were never repeated (for a similar argument
applied to a context-specific PC manipulation, see King, Korb, &
Egner, 2012; see also Schneider, 2015, for a similar idea applied to
cued task switching). Because only a limited set of words and
colors can be used in the color–word Stroop task, a variant, the
picture–word interference task, was used instead.1 Experiment 1
involved two picture–word interference tasks in which the propor-
tion of congruent trials was manipulated in a list-wide fashion (for
a similar manipulation in the picture–word interference task, see
Bugg & Chanani, 2011). Experiment 1A required participants to
categorize unrepeated target pictures paired with unrepeated word
distractors. Participants in Experiment 1B were presented with the
same materials but were required to name the pictures instead. To
preview the results, regular PC effects were obtained in both tasks.

Another objective of the present experiments was to investigate
the role of temporal learning in PC manipulations. To accomplish
this goal, the data from Experiments 1A and 1B were analyzed
using RT on trial n – 1 as an index of temporal expectancy in a
mixed-effects model analysis, similar to those of Schmidt (2013c)
and Kinoshita et al. (2011). However, similar to Cohen-Shikora et
al. (2018), generalized linear mixed-effects models rather than
linear mixed-effects models were used in these analyses. The
reason is that, as noted, RTs typically violate the assumption made

1 Note that although there has been some debate in the literature as to
whether interference effects in the picture–word interference task reflect
the same underlying cognitive processes as interference effects in the
color–word Stroop task (Dell’Acqua, Job, Peressotti, & Pascali, 2007),
abundant support exists for a functional equivalence of the two paradigms
(Lupker, 1979; Schnur & Martin, 2012; Starreveld & La Heij, 2017; van
Maanen, van Rijn, & Borst, 2009), suggesting that the picture–word
interference task can afford substantially larger target, distractor, and
response sets than the color–word Stroop task without otherwise altering
the cognitive processes engaged in the original paradigm.
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by linear mixed-effects models of a normally distributed depen-
dent variable, a problem many researchers, including Schmidt
(2013c), addressed by normalizing RTs with an inverse transfor-
mation. However, as shown by Cohen-Shikora et al. (2018), this
solution is inappropriate when the research interest lies in interac-
tion terms, as those terms are typically altered by nonlinear trans-
formations of the dependent variable. Generalized linear mixed-
effects models, on the other hand, provide a better solution in that,
making no assumption about the distribution of the dependent
variable, they require no RT transformation and permit a clearer
interpretation of interactions (Lo & Andrews, 2015). In addition to
the analyses reported by Cohen-Shikora et al. (2018), the present
analyses can thus shed further light on the questions of whether
evidence for temporal learning will be maintained when a more
appropriate statistical technique is used and, more crucially, how
potential PC effects obtained in Experiments 1A and 1B relate to
the effects of temporal learning.

To further strengthen the conclusions from those analyses, Ex-
periment 2 was conducted to isolate potential effects of temporal
learning from adaptation to conflict frequency in a conflict-free
picture naming task. As will be discussed below, trial-level anal-
yses of Experiments 1A and 1B and results from Experiment 2
provide converging evidence that temporal learning does not ap-
pear to pose a challenge for conflict-adaptation interpretations of
PC effects, at least with the materials and tasks used in the present
experiments.

Experiments 1A and 1B

If repetitions of word distractors are necessary for learning
associations between specific words and specific responses, learn-
ing of such associations should be impossible when word distrac-
tors are never repeated. Such a situation should thus allow re-
searchers to examine potential effects of adaptation to conflict
frequency in the absence of the contingency-learning confound
that is typically found in classic PC manipulations using the
color–word Stroop task (Melara & Algom, 2003; Schmidt &
Besner, 2008). As noted, to this end, a picture–word interference
task was used. In the picture–word interference task, participants
are required to identify a picture while ignoring a word superim-
posed on it. Similar to the color–word Stroop task, two types of
items were used in the task variant employed in the present set of
experiments: Congruent items, with words specifying the name
of the picture itself (e.g., the picture of a dog with the word DOG
superimposed on it), and incongruent items, with words unrelated
to the picture (i.e., belonging to a different semantic category than
the picture’s), as well as not appearing as target pictures in the
experiment (e.g., the picture of a dog had the unrelated word BED
superimposed on it and no picture of a bed appeared in the
experiment).

Using a between-subjects PC manipulation, participants were
assigned to either an MI or an MC list.2 Experiment 1A required
participants to identify unrepeated target pictures paired with un-
repeated word distractors as members of a semantic category and
to respond vocally. Participants in Experiment 1B were presented
with the same materials but were required to name the pictures
instead. Note that despite the materials being the same, the word
distractors used are more relevant to picture naming than they are
to categorization. For example, the word DOG should help more

with naming the picture of a dog than it should help with catego-
rizing a dog as an animal. Furthermore, unlike in picture naming,
in picture categorization not only incongruent words but also
congruent words are absent from the response set. Indeed, in a
picture categorization task, Lupker and Katz (1981) obtained only
a (nonsignificant) 12-ms difference between conditions that are
analogous to the congruent and incongruent conditions of the
present experiment. In contrast, picture naming was expected to
elicit a much larger congruency effect because of the relevance of
word distractors to the task (e.g., Underwood, 1976). Nonetheless,
both picture categorization and picture naming were used in order
to investigate whether the presence of PC effects might depend on
the nature of the task and the basic magnitude of the congruency
effect.

In response to the suggestions of two reviewers of the initial
version of the present paper, we examined not only the PC effect
but also the congruency sequence effect, that is, the finding that in
interference tasks, congruency effects are larger following a con-
gruent trial than following an incongruent trial (Gratton, Coles, &
Donchin, 1983). Traditionally thought of as a marker of conflict
adaptation (e.g., Botvinick et al., 2001), this finding, similar to the
PC effect, has recently received several alternative interpretations
(e.g., Hommel, Proctor, & Vu, 2004; Mayr, Awh, & Laurey,
2003), including a temporal learning interpretation (Schmidt &
Weissman, 2016). This temporal learning interpretation partially
relies on the same interaction that is thought to be responsible for
the PC effect (i.e., decreasing congruency effects with higher RT
on trial n – 1), an interaction that, crucially, Schmidt and Weiss-
man (2016) observed when analyzing inverse RTs. As noted, such
a situation makes the interpretation of interaction terms dubious.
As such, our use of a generalized linear mixed model analysis, an
analysis which permits usage of untransformed RTs, provided a
valuable opportunity to assess whether the unreliability of the
temporal learning interaction reported by Cohen-Shikora et al.
(2018) in the context of the PC effect also applies in the context of
the congruency sequence effect, another important marker of con-
flict adaptation. These additional analyses for Experiments 1A and
1B, along with a discussion of the control and the temporal
learning account of the congruency sequence effect, can be found
in the Appendix.

Method

Participants. An a priori power analysis was performed using
G�Power 3.1 (Faul, Erdfelder, Buchner, & Lang, 2009) to calculate
the sample size needed to have a power of .80 for obtaining a PC
effect. Based on the effect size reported by Bugg and Chanani
(2011) for a PC effect using contingency-controlled items in a
picture–word interference task, we determined that a minimum
sample size of 32 participants would be needed. Forty-eight par-
ticipants took part in Experiment 1A (picture categorization) and
another 51 took part in Experiment 1B (picture naming). In Ex-
periment 1B, one participant was removed because of an equip-
ment failure and two more were removed because of an excessive
number of errors and null responses (above 25%), leaving 48
participants. Participants were all students at the University of

2 Proportion of congruent items was manipulated between-subjects be-
cause of the limited number of items available.
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Western Ontario aged 18–23 years (SD � 1.03) and had normal or
corrected-to-normal vision. All were native English speakers.
Their participation was compensated with course credit.

Materials. One hundred twenty-five line drawings were
sourced from the International Picture Naming Project (IPNP)
database (Szekely et al., 2005). Nineteen pictures from the Internet
matching as closely as possible the style of the IPNP pictures were
added to the set, for a total of 144 target pictures, 480 � 480 pixels
in size. Of these, 36 represented an animal, 36 represented a human
being, 36 represented some type of food, and 36 represented a
man-made object. IPNP norms and pilot testing ensured that there
was high agreement among English-speaking individuals on the
semantic category and name of the pictures. One hundred forty-
four English word distractors, different from the modal names of
the pictures, were also selected. As with the target pictures, 36
denoted an animal, 36 a human being, 36 some type of food, and
36 a man-made object. The word distractors were matched in
length and CELEX frequency (Baayen, Piepenbrock, & van Rijn,
1993) with the pictures’ modal names. Each picture was paired
with the modal name of the picture (congruent item) and with an
unrelated word belonging to one of the other three categories
(incongruent item), with each of the incongruent categories being
equally represented across items. For example, among the 36
pictures of animals, 12 were paired with an unrelated word denot-
ing a person, 12 with an unrelated word denoting food, and 12 with
an unrelated word denoting an object. Powerpoint software was
used to superimpose the word in 32-point Courier New font in the
center of the picture. A light white glow around words’ letters was
added to ensure the word was clearly visible. A sample of the
stimuli used in Experiments 1A and 1B is presented in Figure 1.

Lists were constructed so that for half of the lists, 25% of the
items were congruent (MI lists), and for the other half, 75% of the
items were congruent (MC lists). Specifically, in the MI lists, 36
pictures were presented with their congruent word, and 108 pic-

tures with their incongruent word. Conversely, in the MC lists, 108
pictures were presented with their congruent word, and 36 pictures
with their incongruent word. Each of the semantic categories was
equally probable among the congruent and among the incongruent
items (e.g., in the MC list, nine of the 36 incongruent pictures were
animals, nine were human beings, nine were food items, and nine
were objects, etc.). Similarly, each of the three semantic categories
of incongruent word distractors was equally probable among in-
congruent items (e.g., in the MC list, three of the nine incongruent
animal pictures appeared with an unrelated word denoting a per-
son, three with an unrelated word denoting a food item, and three
with an unrelated word denoting an object).

Lists were also counterbalanced so that each picture appeared
with its congruent and incongruent word distractor in both MI and
MC lists. To this end, the pictures were randomly divided into four
sets: A, B, C, and D. In List 1 of the MC lists, pictures in sets A,
B, and C would serve as congruent pictures and pictures in set D
would serve as incongruent pictures. In List 2 of the MC lists,
pictures in sets A, B, and D would serve as congruent and pictures
in set C would serve as incongruent, and so on. Construction of the
MI lists was done similarly, with List 1 having pictures in sets A,
B, and C serving as incongruent and pictures in set D serving as
congruent, and so forth. Pictures in each set included an equal
number of pictures of animals, people, food, and objects. Overall,
four MI and four MC lists were constructed.

Procedure. Participants were tested individually in a quiet
room, seated approximately 60 cm away from a monitor upon
which the stimuli were presented. Each trial began with a fixation
symbol (“�”) displayed for 500 ms in the center of the screen,
followed by a picture with a word superimposed on it, displayed
for 3000 ms or until the participant’s response. Responses were
recorded with a microphone connected to the testing computer.
Participants in Experiment 1A were instructed to categorize the
picture using one of four semantic categories (ANIMAL, PER-

Figure 1. Sample stimuli used in Experiments 1A and 1B. Represented are congruent items (A) and
incongruent items (B) for each of the four categories (ANIMAL, PERSON, FOOD, and OBJECT). In this
sample, the pictures of the elephant and the shovel come from the International Picture Naming Project (Szekely
et al., 2005) whereas the pictures of the astronaut and bacon were sourced from the Internet.
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SON, FOOD, OBJECT) as responses. Care was taken to explain
the differences between these categories to minimize potential
ambiguities (e.g., living animals that are typically eaten by hu-
mans, such as chicken, being classified as food). Participants in
Experiment 1B were instructed to name the picture instead. In both
experiments, participants were told to ignore the word superim-
posed on the picture and respond as quickly and as accurately as
possible. Participants were randomly assigned to one of the eight
lists in Experiments 1A and 1B. Thus, each participant performed
only one list for a total of 144 trials.

Prior to the experiment, participants performed a practice ses-
sion involving 12 items, different from the items in the experiment
and mirroring the proportion of congruent items in the upcoming
list. They received no feedback. Trials were presented in a differ-
ent random order for each participant. DMDX (Forster & Forster,
2003) software was used to present the stimuli and collect the data.

Results

In these experiments as well as in Experiment 2, response
waveforms were manually inspected with CheckVocal (Protopa-
pas, 2007) to determine the accuracy of the response and the
correct placement of timing marks. RTs were defined as the time
interval between stimulus onset and the beginning of the vocal
response. Errors were marked using a conservative criterion: Any
response that was not the expected response was considered an
error, no matter how close it was to the expected response (e.g.,
“people” instead of “person” for Experiment 1A, or “cop” instead
of “policeman” in Experiment 1B). Prior to the analyses, invalid
trials attributable to technical failures and responses faster than
300 ms or slower than the time limit (accounting for 0.4% and 2%
of the data points in Experiments 1A and 1B, respectively) were
discarded. For the latency analyses, trials for which an error was
made on the current trial were discarded, as were the trials for
which an error or a too-fast response (�300 ms) or a too-slow
response (�3000 ms) was made on the preceding trial.

The latencies and the error rates were analyzed using general-
ized linear mixed-effects modeling in R Version 3.4.3 (R Core
Team, 2015), treating subjects and items (i.e., the target pictures)
as random effects and treating Congruency (congruent vs. incon-
gruent) and List Type (MI vs. MC) as within-subject and between-
subject fixed effects, respectively (Baayen, 2008; Baayen, David-
son, & Bates, 2008). Prior to running the model, R-default
treatment contrasts were changed to sum-to-zero contrasts (i.e.,
contr.sum) to help interpret lower-order effects in the presence of
higher-order interactions (Levy, 2014; Singmann & Kellen, in
press). The model was fit by maximum likelihood with the Laplace
approximation technique. The lme4 package, Version 1.1–15
(Bates, Mächler, Bolker, & Walker, 2015), was used to run the
generalized linear mixed-effects model and obtain probability val-
ues.

In the latency analyses, a generalized linear mixed-effects model
was used instead of a linear mixed-effects model because gener-
alized linear models, unlike linear models, do not assume a nor-
mally distributed dependent variable. Therefore, these models can
accommodate the typically positively skewed distribution of raw
RT data with there being no need to use nonlinear transformations,
known to systematically alter interaction terms (Balota et al.,
2013). A Gamma distribution was used to fit the raw RTs, with an

identity link between fixed effects and the dependent variable (Lo
& Andrews, 2015). Note that convergence tests for generalized
linear mixed-effects models in the current version of lme4 tend to
generate many false positives (Bolker, 2018). In the following, we
report the data from the BOBYQA optimizer, which returned
estimates that were equivalent to other optimizers but never issued
convergence warnings. Unlike the error analyses, latency analyses
included RT on trial n – 1 as a fixed effect to control for temporal
learning (Schmidt, 2013c; Schmidt & Weissman, 2016). Standard-
ized (i.e., centered and scaled) RTs on trial n – 1 were used instead
of raw RTs to avoid spurious correlations between the intercept
and the slope and to help evaluating and interpreting the model
(Bolker, 2018; Kinoshita et al., 2011; Schielzeth, 2010). The
statistical model for the latency analysis was: RT � glmer(RT �
congruency � list_type � SprevRT � (1|subject) � (1|item), fam-
ily � Gamma (link � “identity”), control � glmerControl(opti-
mizer � “bobyqa”)). The statistical model for the error rate anal-
ysis was: Accuracy � glmer(accuracy � congruency � list_type �
(1|subject) � (1|item), family � binomial, control � glmerCon-
trol(optimizer � “bobyqa”)). The mean RTs and error rates based
on by-subject data for Experiments 1A and 1B are shown in Table
1. Scatterplots visualizing the relation between RT on trial n – 1
and the congruency effect on trial n are shown in Figure 2 for
Experiment 1A and in Figure 3 for Experiment 1B. The data and
R scripts used for the analyses are publicly available at https://osf
.io/jnzgb/.

Experiment 1A (picture categorization).
Response time. There were significant main effects of Con-

gruency (congruent faster than incongruent), 	 � �10.68, SE �
2.36, z � �4.53, p � .001, and RT on trial n – 1 (faster responses
with lower RT on trial n – 1), 	 � 23.85, SE � 2.82, z � 8.44, p �
.001. The interaction between Congruency and List Type was
significant as well, 	 � �14.14, SE � 2.54, z � �5.56, p � .001,
indicating that a classic PC effect was obtained, with a larger effect
of Congruency in the MC (54 ms) than in the MI condition (�2
ms). Interestingly, the interaction between Congruency and RT on
trial n – 1, indexing temporal learning, was not significant,
	 � �1.62, SE � 2.61, z � �0.62, p � .54, but the three-way
interaction between Congruency, List Type, and RT on trial n – 1
was, 	 � 6.01, SE � 2.60, z � 2.31, p � .021.

To explore the three-way interaction, MC and MI lists were
analyzed separately. MC lists showed both main effects of Con-
gruency, 	 � �24.89, SE � 3.52, z � �7.07, p � .001, and RT

Table 1
Mean RTs and Percentage Error Rates (and Corresponding
Standard Errors) for Experiments 1A and 1B

Congruency

RTs Error rates

MC list MI list MC list MI list

Experiment 1A
Congruent 893 (24) 912 (31) 1.4 (.3) 2.1 (.6)
Incongruent 947 (24) 910 (37) 2.7 (.6) 2 (.4)
Congruency effect 54 �2 1.3 �.1

Experiment 1B
Congruent 764 (26) 797 (21) 1.1 (.3) 2 (.9)
Incongruent 1106 (38) 1041 (22) 14 (1.7) 11.2 (.9)
Congruency effect 342 244 12.9 9.2
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on trial n – 1, 	 � 25.60, SE � 3.99, z � 6.42, p � .001, but no
interaction between the two, 	 � 4.51, SE � 3.75, z � 1.20, p �
.23. In MI lists, on the other hand, RT on trial n – 1 was significant,
	 � 22.29, SE � 4.58, z � 4.86, p � .001, but Congruency was
not, 	 � 3.26, SE � 3.66, z � .89, p � .37. Here, the interaction
between Congruency and RT on trial n – 1 was significant,
	 � �8.08, SE � 3.91, z � �2.07, p � .039. Note, however, that
the pattern of this interaction is the opposite of that predicted by
temporal learning: As illustrated in Figure 2B, the congruency
effect on trial n increased, rather than decreased, with higher
latencies on trial n – 1.

Error rates. Neither Congruency nor List Type was signifi-
cant. The interaction between the two was marginal, 	 � .17,
SE � .10, z � 1.78, p � .075, indicating a tendency for the

Congruency effect to be larger in the MC (1.3%) than in the MI
condition (�.1%).

Experiment 1B (picture naming).
Response time. There were significant main effects of Con-

gruency (congruent faster than incongruent), 	 � �143.71, SE �
2.62, z � �54.80, p � .001, List Type (MI faster than MC), 	 �
24.96, SE � 4.39, z � 5.68, p � .001, and RT on trial n – 1 (faster
responses with lower RT on trial n – 1), 	 � 22.84, SE � 3.04, z �
7.51, p � .001. The only significant interaction was that between
Congruency and List Type, 	 � �23.64, SE � 2.89, z � �8.19,
p � .001, indicating that a classic PC effect was obtained, with a
larger effect of Congruency in the MC (342 ms) than in the MI
condition (244 ms). Neither the interaction between Congruency
and RT on trial n – 1, 	 � �3.88, SE � 2.66, z � �1.46, p � .14,

Figure 2. The impact of RT on Trial n – 1 on Congruency Effects on Trial n in Experiment 1A. The scatterplots
represent the relation between RT on trial n – 1 and congruency effects on trial n in the MC list (A) and in the
MI list (B). Individual observations for congruent and incongruent trials are marked with circles and triangles,
respectively. Regression slopes for the congruent condition and for the incongruent condition are marked with
solid and dashed lines, respectively.

Figure 3. The Impact of RT on Trial n – 1 on Congruency Effects on Trial n in Experiment 1B. The scatterplots
represent the relation between RT on trial n – 1 and congruency effects on trial n in the MC list (A) and in the
MI list (B). Individual observations for congruent and incongruent trials are marked with circles and triangles,
respectively. Regression slopes for the congruent condition and for the incongruent condition are marked with
solid and dashed lines, respectively.
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nor the three-way interaction between Congruency, List Type, and
RT on trial n – 1, 	 � �.18, SE � 3.01, z � �.06, p � .95, was
significant.

Error rates. There was a main effect of Congruency (congru-
ent more accurate than incongruent), 	 � 1.36, SE � .09, z �
14.71, p � .001. In addition, Congruency interacted with List
Type, 	 � .27, SE � .09, z � 3.00, p � .003, with the congruency
effect being larger in the MC (13.0%) than in the MI condition
(9.1%).

Discussion

Both Experiment 1A and Experiment 1B produced clear PC
effects in a situation where learning of direct associations between
words and responses was impossible. Note that, as suggested by
previous findings (Lupker & Katz, 1981), the basic congruency
effect was much smaller in Experiment 1A (picture categorization:
26 ms) than in Experiment 1B (picture naming: 293 ms). However,
the congruency effect was similarly modulated by conflict fre-
quency across the two tasks, with MI lists in Experiment 1B
showing a congruency effect reduced by 98 ms compared with MC
lists, and Experiment 1A showing the elimination of the congru-
ency effect in MI lists. As discussed, a contingency learning
account would not be able to explain these effects.

Temporal learning also does not seem to offer a reasonable
explanation for the present findings. For temporal learning to
account for PC effects, one would need to find that congruency
effects on trial n get smaller as RT on trial n – 1 increases,
indicating that participants use previous experience in the task to
form and adjust to temporal expectancies for responding in the
way suggested by Schmidt (2013c). Using generalized linear
mixed-effects models to fit raw RTs, robust main effects of RT on
trial n – 1 were found, with overall slower responses on trial n as
RT on trial n – 1 increases. These sequence effects are routinely
reported in speeded tasks (Kinoshita et al., 2011; Taylor & Lupker,
2001). More importantly, no interaction between RT on trial n – 1
and the congruency effect on trial n was found in Experiment 1B,
whereas a complicated pattern emerged in Experiment 1A. Spe-
cifically, in Experiment 1A, MI lists (but not MC lists) showed an
interaction involving the opposite pattern than was expected from
the temporal learning account, i.e., the size of the congruency
effect on trial n increased as the RT on trial n – 1 increased.
Although the cause for this result is unclear, it should be noted that
Cohen-Shikora et al. (2018) also reported inconsistent temporal
learning patterns across the three data sets they analyzed.3 In
general, it is safe to conclude from the overall pattern of results
that temporal learning could not have produced, or even contrib-
uted to the production of, the PC effects reported here.

In sum, Experiments 1A and 1B showed that PC effects emerge
even in the absence of temporal learning and word-response con-
tingencies, a finding that challenges the view that mechanisms of
this sort provide a sufficient account of the PC effects that are
reported in the literature and that adaptation to conflict frequency
may not be a mechanism humans use (Schmidt, 2013b).

To consolidate the idea that temporal learning has little to do
with the PC effect obtained in Experiments 1A and 1B, Experi-
ment 2 was conducted to disentangle conflict frequency from
potential effects of temporal learning. Note that Schmidt’s (2013c)
temporal learning account assumes that temporal expectancies for

responding are altered as a result of any manipulation that induces
appreciable differences in response rhythm. The type of manipu-
lation which can accomplish such an alteration involves changes in
the relative frequency of easy and hard stimuli, with the nature of
the difficulty elicited by those stimuli playing little or no role.
Because difficulty does not need to derive from conflict from an
irrelevant dimension, temporal learning should not be specific to
the type of task used in Experiments 1A and 1B, that is, tasks
where conflict/interference from an irrelevant dimension produces
the difficulty effect. That is, according to the temporal learning
account of PC effects, any task in which the proportion of easy and
hard items is manipulated should produce differences in the tem-
poral expectancies being formed for responses. As a result, the
magnitude of difficulty effects should parallel the pattern observed
for congruency effects in the PC effect: Smaller difficulty effects
in lists where most of the items are hard and larger difficulty
effects in lists where most of the items are easy (Schmidt, 2013c,
2014a, 2016). Experiment 2 tested this prediction for the pictures
used in Experiments 1A and 1B, which were presented without the
superimposed words and modified in such a way that they were
easier or harder to respond to.

Experiment 2

Following Schmidt’s procedure (Schmidt, 2013c; Schmidt &
Weissman, 2016), in Experiments 1A and 1B temporal learning
was accounted for in the analyses by using RT on trial n – 1 as an
index of temporal expectancy, with a lower RT on trial n – 1
indicating a faster temporal expectancy for trial n. However, the
predicted interaction between congruency and RT on trial n – 1,
with smaller congruency effects the higher the RT on trial n – 1,
was not found. In fact, Experiment 1A even produced evidence for
a reversed interaction in MI lists, with larger congruency effects
following higher RTs on trial n – 1. These results are in line with
recent failures to obtain regular temporal learning effects using
untransformed RTs (Cohen-Shikora et al., 2018), suggesting that
the nonlinear transformations reported in previously published
papers (Huber-Huber & Ansorge, 2017, 2018; Kinoshita et al.,
2011; Schmidt, 2013c; Schmidt & Weissman, 2016) might have
systematically biased the interaction of interest in the direction
predicted by temporal learning.

Statistical quirks aside, however, it must be acknowledged that
supporters of temporal learning accounts have pointed out that RT

3 Following a suggestion of one of the reviewers of an earlier version of
this paper, we ran an additional analysis in an attempt to determine whether
part of what would seem to be noise in Experiment 1A might have resulted
from response speed varying across categories. Such variability could
potentially have affected the temporal learning process and, consequently,
PC effects. Indeed, participants were slower with the animal (930 ms), food
(927 ms), and object (949 ms) categories than with the person category
(830 ms), the category that also elicited the smallest overall congruency
effect (5 ms vs. 44 ms, 27 ms, and 30 ms for animal, food, and object
categories, respectively). However, there was no obvious relationship
between the overall category latency (and/or the overall congruency effect
within a category) and the size of the PC effect (i.e., the RT difference
between the congruency effect in the MC list and the congruency effect in
the MI list) that the category elicited (person: 22 ms; animal: �8 ms; food:
147 ms; object: 60 ms). Do note, however, that there was, unavoidably,
considerable noise in this analysis, presumably because there were very
few observations (nine or fewer) in some of the cells.
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on trial n – 1 is likely a noisy approximation of temporal expec-
tancies (Kinoshita et al., 2011; Schmidt, 2013c), although several
attempts, reported by Cohen-Shikora et al. (2018), to use a less
noisy index (e.g., mean RT on the three most recent trials) also
failed to produce consistent evidence for the temporal learning
account of the PC effect. In fact, one could argue that internally
constructed temporal expectancies might deviate considerably
from the measured response time on one or more of the preceding
trials, an argument that might find support in the observation that
time perception is often prone to biases (e.g., Taylor & Lupker,
2006, 2007). The implication is that the analyses performed for
Experiments 1A and 1B might not provide the best means of
determining whether temporal learning is a potential contributor to
the PC effect observed in those experiments.

A better way to deal with this issue might be found in another
approach used by Schmidt (2013c, 2014a, 2016) in his attempts to
demonstrate a potential role for temporal learning in the PC effect,
an approach that does not require using any index of temporal
expectancy in the analyses and thus avoids the potential problems
associated with the noisiness of such measures. Relying on the
assumption that temporal learning should operate similarly in
interference tasks and in tasks in which difficulty does not derive
from interference from an irrelevant dimension (e.g., perceptual
tasks), this approach involves manipulating the proportion of easy
items in a task of the latter type.

Indeed, the existence of a temporal learning mechanism of the
sort described by Schmidt (2013c) implies that any task in which
the proportion of easy and hard items is manipulated should
produce differences in the magnitude of effect sizes in ways that
are compatible with the changes observed for congruency effects
in the PC effect. Specifically, mostly easy (ME) lists (i.e., lists in
which most of the items are relatively easy to process) will favor
development of a fast temporal expectancy that can be met by
items that allow fast responses (i.e., “easy” items), but not by items
that are relatively hard to process (i.e., “hard” items). The result is
a speed-up for only the easy items and, hence, a large difficulty
effect. Mostly hard (MH) lists (i.e., lists in which most of the items
are relatively hard to process), on the other hand, will favor
development of a slow temporal expectancy. Because participants
anticipate responding relatively late, there will be no reason for
them to speed up responses to easy items in this situation, causing
them to produce longer latencies. In contrast, as noted, it is
possible that latencies for hard items may decrease if they can be
processed fast enough to meet the slower temporal expectancy,
although, as Schmidt (2013c) has argued, those items tend to be
insensitive to temporal expectancies (see also Kinoshita et al.,
2011; Schmidt & Weissman, 2016). The end result is that learning
of temporal expectancies should produce larger difficulty effects in
ME lists than in MH lists.

Schmidt (2013a) did, in fact, obtain evidence of such a
Proportion-Easy (PE) effect in a number of studies where no
irrelevant dimension was used (Schmidt, 2013c, 2014a, 2016). For
example, in a letter identification task Schmidt (2014a) found, as
would be expected, shorter latencies for high-contrast letters (easy
items) than for low-contrast letters (hard items). Most importantly,
the size of this difficulty effect was modulated by the proportion of
easy items in the list, with larger difficulty effects in ME lists than
in MH lists, similar to the PC effect in the Stroop task. Although
this finding is not crucial evidence that the mechanism driving PC

effects in the Stroop task and PE effects in nonconflict tasks is the
same, it does suggest that temporal learning might play an impor-
tant role in determining PC effects (Schmidt, 2013c). Specifically,
this approach provides a proof of principle that a PC-like effect can
be obtained even when little or no conflict is present in the task,
suggesting that the mechanism responsible for this PC-like effect
might also be operating when conflict is present, for example, in
Stroop paradigms.

The goal of Experiment 2 was to examine a similar, nonconflict
situation with the pictures used in Experiments 1A and 1B. Similar
to Schmidt’s (2013c, 2014a, 2016) use of high-contrast and low-
contrast letters, high-resolution and low-resolution pictures were
used as easy and hard items, respectively, and participants were
assigned to a ME list where most of the pictures had a high
resolution, or a MH list where most of the pictures had a low
resolution. Following Schmidt’s (2013c) temporal learning ac-
count, it was hypothesized that easy items would be responded to
faster in ME than MH lists, and hard items would be responded to
faster (or, at least, no more slowly) in MH than ME lists. As a
result, a PE effect would be obtained, with ME lists showing a
larger difficulty effect than MH lists.

It is important to note, however, that a different outcome could
be expected from an alternative temporal learning account, specif-
ically, one derived from the literature on blocking effects (Chateau
& Lupker, 2003; Lupker et al., 1997, 2003; Kinoshita & Mozer,
2006; Rastle, Kinoshita, Lupker, & Coltheart, 2003; Taylor &
Lupker, 2001). Blocking effects refer to the finding that when
relatively easy and relatively hard items are mixed in a block (i.e.,
a mixed block, typically with 50% easy and 50% hard stimuli),
latencies tend to be more homogeneous compared to latencies for
easy versus hard items presented by themselves in pure blocks
(i.e., blocks where all of the stimuli are either easy or hard).
Specifically, there is a mixing cost for easy stimuli (i.e., slower
latencies for easy stimuli in mixed blocks than in pure easy blocks)
and a mixing benefit for hard stimuli (i.e., faster latencies for hard
stimuli in mixed blocks than in pure hard blocks). Lupker and
collaborators interpreted this pattern as evidence that participants
in speeded tasks establish a time criterion representing the time at
which they expect, and will attempt, to initiate a response. Impor-
tantly, the placement of the time criterion is dependent upon the
characteristics of the stimuli in the block: The criterion will be set
early in a pure easy block, late in a pure hard block, and in an
intermediate position in a mixed block.

This reasoning can be easily extended to comparisons among
mixed lists varying in the proportion of easy items. That is, in ME
lists, the criterion will be placed relatively early (although not as
early as in a pure easy list), whereas in MH lists it will be placed
relatively late (although not as late as in a pure hard list). As a
result, both easy and hard items should be responded to faster in
ME lists than in MH lists. In other words, under the assumption
that adjustments of the time criterion are similar for easy and hard
items, one might expect main effects of difficulty (easy faster than
hard) and list type (ME faster than MH), but not necessarily their
interaction, that is, difficulty effects may be equivalent in ME and
MH lists. Of importance, the latter pattern (i.e., similar adjustments
of the time criterion for easy and hard items) typically emerges in
word naming tasks but not in (button-press) lexical decision tasks
(in which only easy items appear to be affected by adjustments of
a time criterion), even when using the same items in the two tasks
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(Kinoshita & Mozer, 2006). Because the present experiments used
naming, and blocking effects occur for pictures and words alike
(Lupker et al., 2003), the expectation would be that the interaction
predicted by the temporal learning account would not arise in the
task investigated in Experiment 2 (i.e., picture naming).

Method

Participants. An a priori power analysis was performed using
G�Power 3.1 (Faul et al., 2009) to calculate the sample size needed
to have a power of .80 for obtaining a PE effect. Based on the
effect size reported by Schmidt (2013c) for a PE effect in a letter
identification task, we determined that a minimum of 68 partici-
pants would be needed. One hundred twelve participants took part
in the experiment. Nineteen participants were removed because of
an excessive number of errors and null responses (above 25%),
leaving 93 participants. They were all students at the University of
Western Ontario aged 18–27 years (SD � 1.21) and had normal or
corrected-to-normal vision. All were native English speakers.
They received either $10 or course credit for their participation.

Materials. The materials were derived from those used in
Experiments 1A and 1B. The congruent pictures with their super-
imposed word removed functioned as high-resolution, easy items.
The incongruent pictures with their superimposed word removed
were degraded by resizing them to a quarter of their size and then
inflating them back to their original size with Bulk Resize Photos
(https://bulkresizephotos.com), thus resulting in a lower-resolution
image. Those pictures functioned as low-resolution, hard items.
Other than high-resolution and low-resolution pictures replacing
the congruent and incongruent pictures, respectively, lists and
counterbalancing of the items were identical to those in Experi-
ments 1A and 1B, resulting in four ME lists and four MH lists.

Procedure. The procedure was identical to that in Experiment
1B, with the exception that, of course, superimposed words were
not mentioned in the instructions, and participants were simply
required to name the pictures as quickly and as accurately possible.

Results

Analyses were performed in the same way as was done for
Experiments 1A and 1B with the exception that the factor Con-
gruency was replaced with the factor Difficulty (easy vs. hard) and
the two levels of the factor List Type were ME and MH instead of
MC and MI. In addition, in line with previous PE manipulations
(Schmidt, 2013c, 2014a, 2016), RT on trial n – 1 was not included
as a predictor in the latency analysis because there is no need to
control for temporal learning in this context: Any differences
between difficulty effects across the two list types should be
produced by the learning of temporal expectancies induced by the
Difficulty factor itself.4

Prior to the analyses, invalid trials attributable to equipment
failures and responses faster than 300 ms or slower than the time
limit, accounting for 3.3% of the data points, were discarded.
Because RT on trial n – 1 was not used as a predictor in the latency
analysis, only trials where an error was made on the current trial
were discarded. The mean RTs and error rates are presented in
Table 2. The data and R scripts used for the analyses are publicly
available at https://osf.io/jnzgb/.

Reaction time. There were significant main effects of Diffi-
culty (easy faster than hard), 	 � �31.74, SE � 2.19, z � �14.53,

p � .001, and List Type (faster responses in the ME than the MH
condition), 	 � �17.29, SE � 3.05, z � �5.67, p � .001.
However, Difficulty and List Type did not interact, 	 � �.57,
SE � 1.94, z � �.29, p � .77, reflecting equivalent effects of
Difficulty in the ME (64 ms) and MH lists (65 ms).

Error rates. The only significant effect was that of Difficulty,
	 � .36, SE � .04, z � 9.99, p � .001.

Discussion

In the present experiment, the difficulty of pictures, instead of
word–picture congruency, was manipulated by using high- and
low-resolution pictures, similar to the high- and low-contrast let-
ters used by Schmidt (2013c, 2014a, 2016). Unlike Schmidt’s
results, however, difficulty effects were not any larger in lists
where most of the trials were easy than in lists where most of the
trials were hard. In fact, the magnitude of difficulty effects was
identical in the two conditions, thus failing to replicate the pattern
predicted by Schmidt’s temporal learning account. Note, however,
that the type of list participants were assigned to—ME or MH—
did have an effect, with overall faster latencies in ME than MH
lists. Thus, this pattern seems more consistent with the time
criterion account (Lupker et al., 1997), according to which ME and
MH lists should lead to relatively early and late time criteria,
respectively, affecting latencies for easy and hard items in a similar
way, at least in a naming situation. Most importantly, this pattern
is consistent with the analyses performed for Experiments 1A and
1B in indicating that temporal learning may have little or no role
in modulating difficulty effects in both interference and noninter-
ference tasks.

General Discussion

Do humans adapt to conflict frequency? Recently, some re-
searchers have cast doubt on this idea by pointing out that PC
effects in the Stroop task might be caused by factors other than
conflict adaptation, namely, word–response contingency learning
and temporal learning (Schmidt, 2013b). The present research
addressed this question using a picture–word interference task
where contingencies were eliminated and temporal learning was

4 The model with RT on trial n – 1 as an additional predictor did not alter
the pattern of results reported (i.e., there were main effects of Difficulty
and List Type but no interaction between them). For the interested reader,
there was a main effect of RT on trial n – 1 (with higher RT on trial n –
1 leading to longer latencies on trial n) but no interaction between Diffi-
culty and RT on trial n � 1. None of the other interactions were significant
either.

Table 2
Mean RTs and Percentage Error Rates (and Corresponding
Standard Errors) for Experiment 2

Difficulty

RTs Error rates

ME list MH list ME list MH list

Easy 908 (17) 948 (20) 9.1 (.5) 9.6 (.8)
Hard 972 (19) 1013 (18) 15 (1.1) 14.8 (.6)
Difficulty effect 64 65 5.8 5.1
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controlled for. Clear, contingency-free PC effects emerged in both
picture categorization (Experiment 1A) and picture naming (Ex-
periment 1B) tasks, a finding that challenges the view that contin-
gency learning is a critical factor driving PC effects in the Stroop
task. Similarly, the analysis of the impact of trial n – 1 latency
challenges the view that temporal learning has an important role in
producing PC effects. Together, these results clearly demonstrate
that it is not the case that PC effects are unobservable when those
factors are controlled for (Schmidt, 2013b; Schmidt & Besner,
2008).

It must be noted that although the color–word and picture–word
interference tasks are thought to reflect the same underlying pro-
cesses (see note 1), one important difference between the typical
color–word Stroop task used in the literature and the picture–word
interference task used here is that the former, but not the latter,
elicits response interference. That is, in most implementations of
the color–word Stroop task, incongruent words are also used as
responses (e.g., the word YELLOW is presented in an experiment
in which yellow color targets are also used), whereas incongruent
word distractors were not responses in either Experiment 1A or
Experiment 1B (e.g., BED appeared as a word distractor for the
picture of a dog but not as a target picture). Using distractors that
are not used as responses is known to reduce interference from the
irrelevant dimension in both color–word and picture–word inter-
ference tasks (Lupker & Katz, 1981; Proctor, 1978), suggesting
that response interference, among other factors, contributes to
Stroop and Stroop-like effects (La Heij, 1988). As such, what the
results of Experiments 1A and 1B provide is evidence for adap-
tation to conflict frequency even in a situation in which conflict
was likely less intense than in a typical Stroop task because
response interference was playing little, if any, role.

It is also important to acknowledge, however, that recent find-
ings, published as the present research was in progress, suggest
that learning of contingencies might occur at a more abstract level
than previously thought. Schmidt et al. (2018) reported two color
identification experiments in which words belonging to three dif-
ferent semantic categories were used as distractors, each category
being predictive of one color. Similar to the experiments reported
here, each individual word was presented only once, thus elimi-
nating individual word-response contingencies. A category-based
contingency effect was observed, with faster and more accurate
responses when a category item was presented in the color in
which most of the other items of that category were presented.
Note that although the present experiments were designed to
eliminate individual word-response contingencies, they allowed
for category-based contingency learning. For example, words de-
noting animals were mostly associated with pictures of animals in
MC lists, whereas they were equally associated with each of the
four semantic categories in MI lists. Thus, participants in MC lists
potentially could have used the category of the word distractor to
predict the response, leading to a speed-up on high-contingency
congruent items and therefore, an inflated congruency effect in
MC lists.

An account of this sort, however, seems to be unlikely for a
couple of reasons: First, the effects reported by Schmidt et al.
(2018) (11 ms and a nonsignificant 2 ms in their Experiments 1
and 2, respectively) seem too small to offer a convincing alterna-
tive interpretation of the present findings (note that classic word-
response contingency-learning effects are on the order of 40–60

ms: e.g., Lin & MacLeod, 2018; Schmidt et al., 2007). Second,
although the possibility of using the category of the word distractor
to predict the response might be tenable for Experiment 1A, where
the response was a category name itself, applying this idea to
Experiment 1B would imply that a rather complicated mechanism
was in place: Participants in MC lists would have had to have used
the congruent word distractor to predict the category of the picture,
which would then have helped them retrieve the name of the
picture (i.e., a name � category � name route). However, because
congruent word distractors are the name of the picture, it is unclear
why following this name � category � name route would be of
any benefit for performance. Finally, it has long been established
that pictures are categorized faster than words are (e.g., Lupker &
Katz, 1982; Smith & Magee, 1980), and as such, using the cate-
gory of word distractors to predict the category of the target
pictures would be somewhat counterproductive in a speeded task.
As such, adaptation to conflict frequency seems, at present, a much
better explanation for the PC effects obtained here.

The Present Results From the Perspective of Bugg’s
(2014a) AATC Hypothesis

When considering the implications of the conclusion that a
conflict–adaptation strategy is likely responsible for the results we
obtained, one thing that is potentially important to note is that
unlike classic PC manipulations in the Stroop task, Experiments
1A and 1B presented participants with a situation where learning
of word-response contingencies was not an option at all, as the
identity of word distractors could not be used to predict the
response. Hence, conflict adaptation may have been essentially
the only strategy available for dealing with conflict. Such is not the
case, however, when engaging in routine activities in everyday life
(e.g., driving to one’s workplace). Those situations typically in-
volve attending to a task in the face of stimuli that, reoccurring in
time, become predictive of certain events (e.g., the fuel light on the
car’s dashboard signaling it is time to refuel). It is thus critical to
understand how control over action is implemented in situations
where a contingency-learning option is available.

In response to this concern, Bugg (2014a) proposed the associ-
ations as antagonists to top-down control (AATC) hypothesis to
explain how the employment of contingency-learning and conflict-
adaptation mechanisms is regulated. According to this hypothesis,
the availability of reliable stimulus–response associations moder-
ates the engagement of top-down mechanisms of conflict adapta-
tion. Specifically, no adaptation to conflict frequency would take
place if contingencies can be used to guide responding most of the
time. Conflict adaptation would be, in other words, a last resort
used by the control system only when learning contingencies—the
default mode driving control engagement—is not feasible.

To provide some support for this hypothesis, Bugg (2014a)
divided color–word Stroop stimuli into two sets, a “context” set
and a “transfer” set, and manipulated conflict frequency and con-
tingency learning for the context set only (transfer words were
contingency-unbiased, appearing with congruent and incongruent
colors an equal number of times). The transfer items were inter-
mixed in the same list with context items which were either mostly
congruent or mostly incongruent, so that transfer stimuli appeared
in either a mostly congruent list (when mixed with MC context
items) or in a mostly incongruent list (when mixed with MI context
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items). Crucially, in one version of Bugg’s experiments, both MC
and MI context items allowed learning of contingencies, making
contingency learning a very effective strategy. In contrast, in
another version of Bugg’s experiments, only MC context items
allowed learning of contingencies, as MI context items were con-
structed such that there were no contingencies to learn (i.e., each
of four words was presented equally often in each of four colors).
Thus, contingency learning was not a useful strategy in the MI
condition in this version of her experiments. Consistent with the
AATC hypothesis, Bugg obtained PC effects for transfer items
(i.e., evidence for a conflict-adaptation strategy being applied
when responding to those items) only in the MI condition in the
second version of her experiments, that is, when learning of
contingencies was impossible. When learning of contingencies
was possible for context items in both the MC and the MI list (i.e.,
when such a strategy was useful) there was no evidence of adop-
tion of a conflict-adaptation strategy for the transfer items (for a
counterargument, see Schmidt, 2014b).

Extending the AATC hypothesis to the paradigm used here, the
implication for the results of Experiments 1A and 1B is straight-
forward: Adaptation to conflict frequency occurred not in spite of
contingency learning being impossible, but because it was impos-
sible. That is, contingency-controlled PC effects (i.e., clear mark-
ers of conflict adaptation) were obtained because there were no
contingency biases at all, and adaptation to conflict frequency was
the only remaining good option for maximizing performance in the
task.

Implications of the Present Research for Temporal
Learning Accounts

In addition to examining adaptation to conflict frequency, the
present research also sheds some light on the mechanism of
temporal learning. This general form of learning assumes that
participants in speeded tasks form temporal expectancies for emis-
sion of a response and, most critically, in Schmidt’s (2013c)
conceptualization, they adjust to those expectancies by speeding
up on the trials in which they can produce a latency that matches
the established expectancy. Although some evidence exists in
favor of this mechanism (Kinoshita et al., 2011; Schmidt, 2013c,
2014a, 2016; Schmidt & Weissman, 2016), there is virtually no
support for it in the present data. That is, the use of generalized
linear mixed-effects models, a statistical technique that requires no
transformation of the dependent variable (Lo & Andrews, 2015),
failed to produce the predicted reduction of congruency effects
with increasing RT on trial n – 1 in Experiments 1A and 1B. These
results are consistent with those of Cohen-Shikora et al. (2018),
who failed to obtain regular temporal learning effects using un-
transformed RTs in generalized linear mixed-effects models for a
number of data sets, including Hutchison’s (2011), the dataset
which Schmidt first reanalyzed (with transformed RTs as the
dependent variable) to make a case for temporal learning.

Because temporal learning is indexed by an interaction (i.e., that
between RT on trial n – 1 and congruency on trial n), the present
results and Cohen-Shikora et al.’s results raise the suspicion that
temporal-learning interactions reported in previously published
papers (Huber-Huber & Ansorge, 2017, 2018; Kinoshita et al.,
2011; Schmidt, 2013c; Schmidt & Weissman, 2016) were created
by the use of nonlinear transformations of the dependent variable,

an operation that is routinely performed in linear mixed-effects
modeling. It is important to again note that, although these trans-
formations do a decent job of accommodating the assumption
made by linear mixed-effects models that the dependent variable
be normally distributed, they affect the size and the pattern of
interactions (Balota et al., 2013). Generalized linear mixed-effects
models, requiring no RT transformation, provide researchers with
a safer technique to search for interactions, a technique that,
moving forward, is well worth considering when interactions rep-
resent the main research interest (e.g., Yang, Chen, Spinelli, &
Lupker, 2018).

Another example of the present data failing to support
Schmidt’s (2013c) version of a temporal learning account can be
found in the results of Experiment 2. In that experiment, congruent
and incongruent items were replaced with easy and hard items,
items not requiring the filtering out of irrelevant information as is
required by interference stimuli. The results suggested that
Schmidt’s version of temporal learning was not at work in this
situation (i.e., when vocal responding to multiple pictures is re-
quired). That is, unlike similar investigations in a button-press
letter identification task utilizing low-contrast (i.e., hard) and high-
contrast (i.e., easy) letters as stimuli (Schmidt, 2013c, 2014a,
2016), the proportion of easy stimuli in the list did not influence
the size of the difficulty effect. As the main point of Experiment 2
was to investigate the potential contribution of temporal learning
to the PC effects found in Experiments 1A and 1B, the obvious
question Experiment 2’s results raise is whether it is possible to
reconcile them with Schmidt’s (2013c, 2014a, 2016) findings that
manipulating frequency of difficulty does alter the magnitude of
difficulty effects.

One important difference between Experiment 2 and Schmidt’s
(2013c, 2014a, 2016) experiments is the nature of the identifica-
tion that is required (naming of multiple pictures vs. button-press
identification of a limited set of letters). As mentioned above,
button-press lexical decision and word naming tend to show dif-
ferent patterns of blocking effects, with naming showing equiva-
lent benefits for both easy and hard items in a block containing
mainly easy items, whereas button-press lexical decision typically
produces an asymmetric pattern, with large benefits for easy items
but not for hard items in a block containing mainly easy items
(Kinoshita & Mozer, 2006). Extending this idea to proportion-easy
manipulations, it is easy to see how a vocal-responding situation
where easy and hard items are influenced by the frequency of
difficulty in the same way will result in no proportion-easy effect,
whereas a manual-responding situation where easy items are in-
fluenced by frequency of difficulty, but hard items much less so,
will likely result in a proportion-easy effect.

Note that manual and vocal identification do differ in various
ways. For example, manual responding generally constrains the
number of responses available, whereas vocal responding, as in the
present experiments, allows for multiple responses. Furthermore, a
button press response requires participants to make a forced choice
and commit to it, whereas a vocal response involves a gradual
accumulation of evidence (e.g., Perea & Carreiras, 2003). As a
result, participants might develop different subjective error esti-
mates in the two situations. That is, their confidence in being able
to give the correct response with sufficient time might not be the
same.
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Indeed, response confidence was the very factor that Kinoshita
and Mozer (2006) held responsible for the different patterns of
blocking effects observed in word naming and lexical decision
tasks. In those tasks, high-frequency and low-frequency words
were used as easy and hard items, respectively. Importantly, par-
ticipants in a word-naming task can be assumed to be relatively
confident about their response, even for hard items, but such may
not be the case for the same hard items in lexical decision, for
which a certain degree of uncertainty might remain even when a
response is made (i.e., you know you will eventually name “gla-
brous” acceptably, but do you know for sure you will correctly
classify it as a word or a nonword?).

The story changes, however, if the low-frequency words that are
used, despite being harder than the high-frequency words, are
familiar enough for participants to confidently classify them as
words. Using these kinds of low-frequency words, Kinoshita and
Mozer (2006) obtained the pattern usually found in naming, equiv-
alent effects for low- and high-frequency words. Kinoshita and
Mozer explained these findings in term of their ASE model.
Simply put, the ASE model predicts that when an item is so hard
that participants may never (i.e., even if they had no time pressure)
be completely confident about their response, participants will not
wait extra time in pure hard, compared to mixed, blocks, as doing
so will not significantly improve accuracy. As a result, they will
respond before they are entirely confident in pure hard blocks and
no mixing benefit will be observed for those stimuli. When,
however, hard items can still be responded to confidently given
more time, it will be worth it to wait the extra time to confidently
produce an accurate response, which will result in longer latencies
in hard blocks and, hence, a mixing benefit.

One could certainly argue there might be parallels between the
two situations examined by Kinoshita and Mozer (2006) and the
two situations created by the present Experiment 2 versus
Schmidt’s (2013c, 2014a, 2016) experiments, parallels which
might explain the difference between the data patterns in the latter
two situations. Although it seems unlikely that participants in
Experiment 2 were completely confident about their responses to
all low-resolution pictures, it is important to note that participants
were presented with stimuli which often had multiple acceptable
responses (in fact, several of the responses marked as errors with
the conservative criterion adopted here were actually fairly accept-
able responses, e.g., “tool” instead of “screwdriver,” “swimming”
instead of “swimmer,” etc.). In addition, because participants were
not given feedback, as is typical in naming tasks, they were never
informed that they were making “errors” in many situations. In
turn, this inability to know when errors were being made might
have led them to assume that their responses were likely accept-
able and to conclude that given enough time, they would confi-
dently respond to both easy items (i.e., high-resolution pictures)
and hard items (i.e., low-resolution pictures). Therefore, the situ-
ation in the present Experiment 2 would be much more like that in
a standard naming task, implying that one would expect a speed-up
for both easy and hard items in the easy block.

In contrast, participants in Schmidt’s experiments were regu-
larly given feedback, and were presented with stimuli which had
only one acceptable response among a limited set of responses.
Thus, participants in Schmidt’s experiments had a better idea about
how well (or badly) they were performing. Therefore, it is possible
that those participants were, in some cases, constantly unsure

about the accuracy of their responses to hard items (i.e., low-
contrast letters). In turn, this situation could have reduced the
impact of frequency of difficulty selectively for hard items, as
predicted by the ASE model, thus producing the pattern of block-
ing effects often found in lexical decision tasks, that is, the differ-
ences in the magnitude of the difficulty effects in ME and MH lists
that he observed. An examination of the role of response modality,
size of the response set, and feedback in the high/low contrast
letter identification paradigm would likely help shed light on the
reason why the present results and Schmidt’s differ so remark-
ably.5

Conclusion

To conclude, the reported data make a good case for the exis-
tence of a conflict-adaptation mechanism in humans. Far from
being a mere illusion, such a mechanism might be an important
resource in coping with tasks that require some degree of distrac-
tion suppression. Although learning about what to respond (con-
tingency learning) and when to do it (temporal learning) might be
crucial aspects in goal-oriented behavior, learning how to respond
(i.e., learning the appropriate attentional strategy to achieve the
desired goal) is another human ability that should be acknowl-
edged.

5 It is important to appreciate the fact that the present discussion rests on
the assumption that a temporal-learning mechanism is responsible for the
pattern reported by Schmidt (2013c, 2014a, 2016) in the letter identifica-
tion task. However, as recognized by Schmidt (2013c), this assumption
may not be correct: If low-contrast letters are thought as stimuli creating a
relatively high level of perceptual conflict, a mechanism of adaptation to
the frequency of perceptual conflict could also explain his data (e.g., if
participants squint their eyes more in the list containing mostly low-
contrast letters, the contrast effect will be reduced). At the same time, the
results from Experiment 2 constrain this putative conflict-adaptation mech-
anism in that they suggest that not all forms of stimulus degradation (e.g.,
the resolution of an image) engender a kind of perceptual conflict that
people can adapt to.
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Appendix

Examining the Impact of Temporal Learning on the Congruency Sequence Effect

The congruency sequence effect refers to the finding that, in
interference tasks, congruency effects are larger following a con-
gruent trial than following an incongruent trial (Gratton et al.,
1983). The traditional, control-based account of this effect (Bot-
vinick et al., 2001) holds that experiencing conflict during an
incongruent trial would lead participants to focus attention to the
target dimension, thus reducing interference on subsequent trials;
conversely, experiencing little or no conflict during a congruent
trial would lead to relaxed attention, thus increasing interference
on subsequent trials. Like the control account of the PC effect, this
explanation has also faced some challenges: For example, in most
paradigms, repetitions of stimulus features from one trial to the
next seem to contribute to the congruency sequence effect (e.g.,
Hommel et al., 2004; Mayr et al., 2003), although a congruency
sequence effect is still observed when this confound and others are
removed (e.g., Schmidt & Weissman, 2014; Weissman, Jiang, &
Egner, 2014).

Recently, however, Schmidt and Weissman (2016) proposed
that the congruency sequence effect observed when potential con-
founds are accounted for is best interpreted as being the result of
a temporal learning mechanism rather than the result of a conflict-
adaptation mechanism. This temporal learning explanation is sim-
ilar to the one proposed for PC effects. Following a trial in which
a fast response was emitted (typically, a congruent trial), partici-
pants will develop a relatively fast temporal expectancy which will
speed up responding to a subsequent item that could be processed

rapidly enough to meet that fast temporal expectancy (a situation
typically occurring on a congruent trial). Because this speed-up
will typically benefit congruent items but not incongruent items,
the result will be an inflated congruency effect following a con-
gruent trial, consistent with the pattern of the congruency sequence
effect. Conversely, following a trial in which a slow response was
emitted (typically, an incongruent trial), participants will develop
a relatively slow temporal expectancy. This temporal expectancy
could potentially speed up responding to a subsequent slow item
that could be processed fast enough to meet that slower temporal
expectancy (a situation typically occurring on an incongruent
trial), although this result may not be observed in practice because,
as noted, temporal expectancies often have little impact on hard-
to-process stimuli (Kinoshita & Mozer, 2006; Kinoshita et al.,
2011). In any case, the point is that following an incongruent
stimulus, there is a potential speed-up for incongruent items.
However, in comparison with what happens when the preceding
response was fast, there would be no pressure to produce faster
responses for fast (i.e., congruent) items. The result would be a
congruency effect which should be, if anything, relatively small—
again, consistent with the pattern of the congruency sequence
effect. In sum, a temporal learning mechanism of this sort would
seem capable of creating a pattern of results that mimics the
congruency sequence effect with no need to assume a conflict
adaptation mechanism.

(Appendix continues)
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To support their temporal learning interpretation of the congru-
ency sequence effect, Schmidt and Weissman (2016) reanalyzed
Schmidt and Weissman’s (2014) data, a confound-minimized
study of the congruency sequence effect in the prime-probe task,
using RT on trial n – 1 as an index of temporal expectancy for trial
n in a linear mixed-effects model analysis. They reasoned that the
finding of an interaction between RT on trial n – 1 and congruency
on trial n whereby congruency effects diminish with higher RT on
trial n – 1 would be evidence that a temporal learning mechanism
is being used. Indeed, they obtained not only such an interaction
but also a reduction (although not an elimination) of the value of
the beta parameter for the congruency sequence effect (i.e., the
interaction between congruency and congruency on trial n – 1) in
the model. Using similar reasoning as that used by Schmidt
(2013c) for the PC effect, Schmidt and Weissman (2016) inter-
preted these results as indicating that temporal learning can gen-
erate a congruency sequence effect on its own, an idea they
reinforced by successfully simulating the experimental data with
an upgraded version of Schmidt’s (2013c) PEP model in which
temporal learning was an implemented mechanism but trial-to-trial
conflict adaptation was not.

However, a fundamental problem with Schmidt and Weissman’s
(2016) results is that, similar to what done by Schmidt (2013c) in
the context of the PC effect, RTs were inverse-transformed to
accommodate the assumption of a normally distributed dependent
variable made by linear mixed-effects models. As noted, such a
transformation can substantially alter the pattern of interactions
and thus casts serious doubts on the interpretation of interactions,
including the critical interaction between RT on trial n – 1 and
congruency, the interaction that indexes temporal learning. In the
following, we present additional analyses of Experiments 1A and
1B to examine whether the problems that emerged for the temporal
learning explanation of the PC effect when a more appropriate
analysis is used (i.e., generalized linear mixed-effects models with
untransformed RTs; Cohen-Shikora et al., 2018) also emerge when
considering the congruency sequence effect.

Results

The analyses were based on the same data as those used for the
analyses reported in the main text of the article, with the exception
that trials for which an error was made on the preceding trial were
removed from both the latency and the error analyses, as is
standard for analyses of congruency sequence effects. Further-
more, in order to minimize the impact of feature and response

repetitions (Hommel et al., 2004), for Experiment 1A (picture
categorization) we removed the trials in which the category of the
picture (and hence, the correct response) on trial n matched the
category of the picture (and correct response) on trial n – 1 (e.g.,
the picture of dog preceded by the picture of a cat, with both
pictures requiring the response ANIMAL). The statistical models
were also the same as those used for the analyses reported in the
main text of the article, with the exception that Congruency on trial
n – 1 was included as an additional fixed effect. The mean RTs and
error rates for by-subject data for these analyses of Experiments
1A and 1B are presented in Tables A1 and A2, respectively.

Experiment 1A (picture categorization).
Response time. There was a main effect of RT on trial n – 1

(faster responses with lower RT on trial n – 1), 	 � 24.01, SE �
3.42, z � 7.01, p � .001, but not Congruency, 	 � �3.86, SE �
3.31, z � �1.16, p � .25. The interaction between Congruency
and List Type, that is, the PC effect, was significant, 	 � �8.73,
SE � 3.49, z � �2.51, p � .012. Congruency on trial n – 1
marginally interacted with List Type, 	 � 6.75, SE � 3.52, z �
1.92, p � .055, indicating that in MC lists responses tended to be
overall faster when trial n – 1 was incongruent, a pattern that was
reversed in MI lists. Most importantly, Congruency on trial n – 1
and Congruency did not interact, 	 � �2.63, SE � 3.44,
z � �.76, p � .47, although there was a marginal three-way
interaction between Congruency on trial n – 1, Congruency, and
List Type, 	 � �5.52, SE � 3.30, z � �1.68, p � .094. As in the
analysis presented in the main text of the article, there was also a
three-way interaction between Congruency, List Type, and RT on
trial n – 1, 	 � 7.29, SE � 3.29, z � 2.21, p � .027.

(Appendix continues)

Table A1
Mean RTs and Percentage Error Rates (and Corresponding
Standard Errors) for the Congruency-Sequence-Effect Analysis
of Experiment 1A

Congruency

RTs Error rates

MC list MI list MC list MI list

Previous congruent
Congruent 920 (25) 931 (36) 1.3 (.3) .8 (.8)
Incongruent 970 (25) 913 (37) 2.7 (.7) 2 (.8)
Congruency effect 50 �18 1.4 1.2

Previous incongruent
Congruent 923 (24) 935 (32) 3.9 (.8) 2.7 (.7)
Incongruent 928 (32) 938 (39) 4.3 (1.7) 2.2 (.5)
Congruency effect 5 3 .4 �.5
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The three-way interactions were explored by analyzing MC and
MI lists separately. In MC lists, the main effects of Congruency on
trial n – 1 (faster responses when trial n – 1 was incongruent), 	 �
10.46, SE � 5.08, z � 2.06, p � .040, Congruency (congruent
faster than incongruent), 	 � �11.96, SE � 5.03, z � �2.38, p �
.017, and RT on trial n – 1, 	 � 24.86, SE � 5.54, z � 4.49, p �
.001, were all significant. In addition, there was a marginal inter-
action between Congruency on trial n – 1 and Congruency,
	 � �9.36, SE � 5.19, z � �1.80, p � .071. This interaction
indicates a regular congruency sequence effect, with a tendency for
the congruency effect to be reduced following an incongruent trial
(5 ms) compared with the congruency effect following a congruent
trial (50 ms). Note that this reduction occurred because responses
to incongruent trials were faster when following another incon-
gruent trial (928 ms) than when following a congruent trial (970
ms), 	 � 39.70, SE � 17.71, z � 2.24, p � .025, whereas
Congruency on trial n – 1 had no impact on congruent trials, 	 �
2.15, SE � 10.38, z � .21, p � .84. Note that, as in the analysis
reported in the main text of the article, Congruency and RT on trial
n – 1 did not interact, 	 � 5.90, SE � 5.49, z � 1.07, p � .28,
suggesting that there was no temporal learning mechanism being
used.

In MI lists, the only significant effect was RT on trial n – 1, 	 �
22.29, SE � 4.58, z � 4.86, p � .001. In particular, there was
neither an interaction between Congruency on trial n – 1 and
Congruency, 	 � 2.43, SE � 5.48, z � .51, p � .61, nor a
numerical tendency for a congruency sequence effect. Similar to
the analysis reported in the main text of the article, there was a
tendency for congruency effects to increase with higher RT on trial
n – 1, which is the reverse of the pattern predicted by the temporal
learning account (i.e., decreasing congruency effects with higher
RT on trial n – 1). However, the interaction between Congruency
and RT on trial n – 1 was not significant in this analysis,
	 � �7.17, SE � 5.48, z � �1.31, p � .19.

Error rates. Both Congruency, 	 � .26, SE � .16, z � 1.67,
p � .096, and List Type, 	 � �.31, SE � .18, z � �1.69, p �
.091, were marginally significant, with congruent items showing a
tendency to elicit less errors than incongruent items and MC lists
showing a tendency to elicit more errors than MI lists. Congruency
on trial n – 1 was significant, 	 � .42, SE � .16, z � 2.64, p �
.008, indicating that participants were more accurate following a
congruent trial (1.6%) than an incongruent trial (3.2%). No other
effect reached significance.

Experiment 1B (picture naming).
Response time. The main effects of Congruency (congruent

faster than incongruent), 	 � �143.42, SE � 3.44, z � �41.74,
p � .001, Congruency on trial n – 1 (faster responses following an
incongruent trial), 	 � 15.27, SE � 3.56, z � 4.29, p � .001, List
Type (MI faster than MC), 	 � 22.68, SE � 7.63, z � 2.97, p �
.003, and RT on trial n – 1 (faster responses with lower RT on trial
n – 1), 	 � 30.80, SE � 4.32, z � 7.13, p � .001, were all
significant. Congruency and List Type interacted, 	 � �20.67,
SE � 4.12, z � �5.02, p � .001, indicating a regular PC effect.
Congruency also interacted with Congruency on trial n – 1,
	 � �11.79, SE � 3.62, z � �3.26, p � .001. This interaction
indicates a regular congruency sequence effect, with a reduced
congruency effect following an incongruent trial (274 ms) than
following a congruent trial (307 ms). Again, the main reason for
this reduction was that responses to incongruent trials were faster
when following another incongruent trial (1060 ms) than when
following a congruent trial (1083 ms), 	 � 54.11, SE � 11.71, z �
4.62, p � .001. In contrast, Congruency on trial n – 1 had no
impact on congruent trials, 	 � 6.96, SE � 8.32, z � .84, p � .40.

There was also an interaction between Congruency on trial n –
1 and RT on trial n – 1, 	 � 11.89, SE � 4.64, z � �2.56, p �
.010, with lower RT on trial n – 1 producing a larger speed-up for
responses on trial n if trial n – 1 was congruent than if it was
incongruent, and a marginal interaction between Congruency and
RT on trial n – 1, 	 � �7.44, SE � 3.97, z � �1.87, p � .061,
with a tendency for congruency effects to increase with higher RT
on trial n – 1. The former interaction seems consistent with the idea
that fast temporal expectancies produced by easy-to-process stim-
uli (i.e., congruent) have a larger impact on performance than do
slower temporal expectancies produced by hard-to-process stimuli
(i.e., incongruent; Schmidt & Weissman, 2016). On the other hand,
the finding that congruency effects increased with higher RT on
trial n – 1 reflects, once again, the reverse of the pattern predicted
by the temporal learning account, according to which higher RT on
trial n – 1 should reduce congruency effects.

Error rates. Congruency (congruent more accurate than in-
congruent) was the only significant effect, 	 � 1.28, SE � .11, z �
11.28, p � .001.

(Appendix continues)

Table A2
Mean RTs and Percentage Error Rates (and Corresponding
Standard Errors) for the Congruency-Sequence-Effect Analysis
of Experiment 1B

Congruency

RTs Error rates

MC list MI list MC list MI list

Previous congruent
Congruent 762 (27) 791 (26) 1 (.3) 2.6 (2.1)
Incongruent 1111 (40) 1054 (26) 15.3 (2.1) 11.4 (1.5)
Congruency effect 349 263 15.2 8.8

Previous incongruent
Congruent 770 (24) 802 (22) 1.3 (.5) 2 (.8)
Incongruent 1083 (42) 1037 (23) 8.5 (2) 11 (1.1)
Congruency effect 313 235 7.2 9

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

1013ADAPTATION TO CONFLICT FREQUENCY



Conclusion

Similar to what was found for the PC effect, temporal learning
does not seem to provide a convincing explanation for the con-
gruency sequence effect in the present dataset. According to the
temporal learning account, a congruency sequence effect should
emerge as a consequence of a mechanism whereby congruency
effects decrease with higher RT on trial n – 1. However, in an
analysis in which untransformed RTs were used (thus avoiding
potential problems associated with nonlinear transformations of
the dependent variable), we found, if anything, marginal evidence
for the opposite pattern (i.e., congruency effects increasing with
higher RT on trial n – 1) in Experiment 1B and a numerical
tendency in the same direction in the MI list of Experiment 1A.
Although this situation suggests that no temporal learning mech-
anism was being used, a regular congruency sequence effect
emerged nonetheless.

It is worth noting that in the present analyses, not only temporal
learning was controlled for but also feature and response repeti-
tions were either removed (Experiment 1A) or minimal to begin
with (i.e., there were no response repetitions in Experiment 1B
because each trial required a different response). Therefore, we are
inclined to interpret the congruency sequence effect that was
obtained as resulting from a trial-to-trial conflict-adaptation mech-
anism (Botvinick et al., 2001), with recent experience with conflict

leading to focused attention, thereby decreasing interference, and
recent experience with little or no conflict leading to relaxed
attention, thereby increasing interference. This explanation would
be consistent with the finding that the congruency sequence effect
was mainly caused by facilitation for incongruent trials following
another incongruent trial, a pattern that would reflect reduced
interference when interference has recently been dealt with. This
explanation would also seem to accommodate the fact that in the
MI list in Experiment 1A, no congruency sequence effect was
obtained. The high number of incongruent trials produced a com-
plete elimination of the congruency effect in that list, suggesting
that there was little conflict to adapt to. Indeed, it seems reasonable
to assume that some amount of conflict is necessary in order for a
trial-to-trial conflict adaptation mechanism to be operable. The
core claim, in any case, is that not only the PC effect but also the
congruency sequence effect, another important marker of conflict
adaptation, emerges when potential confounds are accounted for,
and most importantly, temporal learning does not seem to offer a
convincing alternative to a control-based interpretation of this
effect.
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